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The electric double layer around fractal electrodes is studied with direct numerical simulations of the
Nernst-Planck equation coupled with the Poisson equation. The capacitance and the relaxation time obey a
power law as a function of the system size, the temperature, and the concentration. The time evolution of the
charging process exhibits a stretched exponential law, and the exponent � is numerically evaluated.
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I. INTRODUCTION AND MODEL EQUATION

The electric double layer plays an important role in vari-
ous research fields such as plasma physics, electrochemistry,
and colloidal science. Electric double-layer capacitors
�EDLCs� are electric devices with large capacitance using
the electric double layer �1,2�. Activated carbon is used as
electrode materials in EDLCs. The high capacitance is
caused by the large surface area in the random porous media.
The rough surfaces in porous media are often characterized
by the fractal dimension �3�. It is important to understand the
electric double layer in fractal media. In this paper, we study
the charging dynamics of the electric double layer on fractal
electrodes. Because geometrical properties such as the fractal
dimension are well-known, we use a diffusion-limited aggre-
gation �DLA� cluster and a critical percolation cluster as a
simple random fractal electrode in two dimensions, although
they are not so realistic models for EDLCs. We study a
simple dynamical model for the electric double layer around
the fractal electrodes and do not consider many effects such
as finite-length-dipole effects and steric effects of finite ion
size, although they are important in realistic EDLCs �4,5�.

The electric double layer on the fractal electrode has been
often studied using electric circuit models �6,7�. In this pa-
per, we study the electric double layer by the direct numeri-
cal simulation of a dynamical version of the Gouy-Chapman
model in electrochemistry �8,9�. In the Gouy-Chapman
model, the electric double layer is constructed only with the
diffusion double layer. That is, we do not consider the Helm-
holtz layer for the sake of simplicity. The electric potential
obeys the Poisson equation. Positive and negative ions sat-
isfy the Nernst-Planck equations. The coupled model equa-
tions are written as

��+

�t
= D+�2�+ + �+e � ��+ � �� ,

��−

�t
= D−�2�− − �−e � ��− � �� ,

�2� =
e

�
��− − �+� , �1�

where � is the electric potential, �+ and �− denote the con-
centration of the positive and negative ions, D± denotes the

diffusion constant for ions, �± is the mobility of ions, and �
is the dielectric constant. We assume further that the charge
of each ion is ±e, and the mobility of each ion is the same
�+=�−=� for the sake of simplicity. Owing to the Einstein
relation, the diffusion constant and the mobility satisfy the
relation D+=D−=D=�kBT. The electrode potential is fixed
to be �=V at an inner fractal electrode and � is fixed to be 0
at an outer circular surface at r=L, where r is a distance from
the central point. In the thermal equilibrium state, the ion
concentration satisfies

��± ± e/�kBT��± � � = 0. �2�

By integrating Eq. �2�, the thermal equilibrium distribution is
obtained as

�+�x� = �s exp�− e��x�/kBT�, �−�x� = �s exp�e��x�/kBT� ,

�3�

where �s is the concentration at r=L. By rescaling the space
and time coordinates and the electric potential using the De-
bye length �s= ��kBTs / �e2�s��1/2, ts=� / ��e2�s�, and Vs

=kBTs /e at a certain temperature Ts and a certain concentra-
tion �s, Eq. �1� is rewritten as

��+

�t
= T�2�+ + ���+ � �� ,

��−

�t
= T�2�− − ���− � �� ,

�2� = �− − �+, �4�

where the variables and the control parameters are changed
as �+ /�s→�+, �− /�s→�−, x /�s→x, t / ts→ t, Dts /�s

2=T /Ts
→T, and � /Vs→�. The ion concentration is fixed to be �0
and the electric potential � is 0 at the outer boundary r=L.
The dimensionless control parameters are the temperature T,
the electrode potential V at the inner electrode, and the con-
centration �0.

II. CAPACITANCE AND RESISTANCE OF ELECTRIC
DOUBLE LAYER ON CIRCULAR ELECTRODE

First, we consider a simple case that the electrode is not
fractal but a circle of radius R. The inner and outer electrodes
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are schematically shown in Fig. 1�a�. We assume that V /T is
smaller than 1 for the sake of simplicity because the strong
nonlinear problem is more difficult. One-dimensional dy-
namics under the strong voltage was studied by Bazant et al.
�10�. The circular symmetry is expected in this system, then,
all variables depend only on r. The concentrations satisfy
�+�r�=�0 exp�−��r� /T�, �−�r�=�0 exp���r� /T� in the equi-
librium state. By using the approximation �+��0�1−� /T�
and �−��0�1+� /T� �which is satisfied for ��� /T�1�, the
Poisson equation becomes

�2�

�r2 +
1

r

��

�r
−

2�0�

T
= 0. �5�

The solution satisfying ��R�=V and limr→	��r�=0 is ex-
pressed as

��r� = VI0�r/��/I0�R/�� ,

where I0�r� is the modified Bessel function, �=	T / �2�0� is
the Debye length in our unit, and L is assumed to be suffi-
ciently larger than R+�. The Debye length represents the
scale of the width of the electric double layer. The total
charge Q stored in the electric double layer is expressed as

Q = 

R

	

dr�2
r���− − �+� = V

R

	

dr�2
r�

��2�0/T�I0�r/��/I0�R/�� . �6�

Because ��r� decays from V to 0 in a length scale of the
order �, the integral is approximated as

Q � V	2�0/T�2
R���/2� ,

where � is a numerical factor of O�1�. The capacitance C is
evaluated as

C � 	2�0/T�2
R���/2� . �7�

The capacitance C has a form of C=S /d, where S=2
R is
the surface length of the condenser, and d is the width of the
condenser, which is expressed as d=2� /�.

The Nernst-Planck equation is rewritten in a system with
circular symmetry as

��+

�t
= T

1

r

�

�r
�r

��+

�r
� +

1

r

�

�r
�r�+

��

�r
� ,

��−

�t
= T

1

r

�

�r
�r

��−

�r
� −

1

r

�

�r
�r�−

��

�r
� . �8�

We have performed a numerical simulation for R=8, L
=100, V=1, T=10, and �0=1. The initial condition is �+�r�
=�−�r�=�0=1. Figures 1�b� and 1�c� display snapshot pro-
files of q�r�=�−�r�−�+�r� and ��r� at t=2.5, 5, 7.5, and 10.
The electric charge is only stored for R
r
20 as shown in
Fig. 1�b�. The profile of the potential ��r� changes largely
around r=16. When t is sufficiently large, ��r� becomes zero
around r=20. From these numerical results, it is seen that the
electric potential ��r� satisfies the Laplace equation

�2�

�r2 +
1

r

��

�r
= 0,

for r�R2=R+�2�, because there is no charge for r�R2.
Here, the width of the charged area is of the order of the
Debye length and is expressed as �2� using another numeri-
cal factor �2. The solution of the Laplace equation satisfying
the boundary condition ��L�=0 is ��r�=−�2 ln�r /L�, where
�2 is an integral constant. If the electric charge Q�t� is stored
inside of r=R2 at a certain time t, the potential ��r� at r
=R2 is estimated as ��R2�=V−Q�t� /C. The integral constant
�2 is therefore given by �2= �V−Q�t� /C� / ln�L /R2�. Because
the potential gradient is expressed as �� /�r=−�2 /L at the
outer circular boundary r=L, the time evolution of Q�t� is
evaluated as
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FIG. 2. �a� Numerically obtained capacitance C vs T for R=8,
L=40, and �0=1. The dashed curve is C=	2/T
R� with �=2.2.
�b� Numerically obtained relaxation rate 1 /� as a function of L for
R=8, T=10, and �0=1. The dashed curve is �=1/�
=	8T / �R� ln�L / �R+�2

	2/T��� with �=2.2 and �2=0.8.
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FIG. 1. �a� Circular electrodes with radius r=R and r=L. Snapshot profiles of �b� q�r�=�−−�+ and �c� ��r� at t=2.5, 5, 7.5, and 10 for
R=8, L=100, V=1, T=10, and �0=1.
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dQ

dt
= 2 � 2
L � �0 � �2/L =

4
�0�V − Q�t�/C�
ln�L/R2�

, �9�

from the surface integral of the current J=�0�� /�r at the
outer circular boundary. Here, we have used an assumption
that the diffusion current by ��+�r� /�r and ��− /�r is zero at
r=L, which has been numerically confirmed, and it is seen
also from �q�r� /�r=0 at r=L in Fig. 1�b�. The relaxation
time for the charging process is therefore given by

� = C ln�L/R2�/�4
�0� , �10�

and the resistance is evaluated as R=ln�L /R2� / �4
�0� by the
relation �=RC.

Figure 2�a� displays numerically obtained capacitance as
a function of T for R=8, L=40, and �0=1. The dashed curve
is C=	2/T
R� with �=2.2. Figure 2�b� displays numeri-
cally obtained decay rates 1 /� as a function of L for R=8,
T=10, and �0=1. The dashed curve is 1 /�
=	8T / �R� ln�L / �R+�2

	2/T��� with �=2.2 and �2=0.8.
Good agreement is seen between numerical results and the-
oretical curves.

III. CAPACITANCE OF ELECTRIC DOUBLE LAYERS ON
FRACTAL ELECTRODES

In this section, we study the capacitance stored in the
electric double layers around fractal electrodes. Only the in-
ner electrode is fractal and the outer electrode is circular as
shown schematically in Fig. 3�a�. In this paper, we use DLA
clusters and critical percolation clusters as fractal electrodes
because the geometrical properties are well-understood. The
electric double layer is formed around the electrode surface.
Only the charge stored around the outermost surface is effec-
tive for the capacitance because the electric charge cannot
penetrate into the inner space of the electrode, even if there is
vacant space in the inner space. For a DLA cluster, every site
belongs to the outermost surface. The fractal dimension of
the outermost surface is therefore equal to Df =1.71. If the
raidus of gyration is expressed as Rg, the total surface site
number is scaled as Ns�Rg

Df. For a critical percolation clus-
ter, the fractal dimension of the outermost surface is evalu-
ated as nearly 4/3�1.3, which is different from the fractal
dimension 1.895 of the whole critical percolation cluster
�11�.

The DLA cluster and the critical percolation cluster are
constructed on a square lattice of grid size �x=0.2. We have
performed direct numerical simulations of the Nernst-
Planck-Poisson equation �4� with a simple Euler method of
grid size �x=0.2 and time step �t=0.001. The electric po-
tential � is fixed to be V on the fractal sets. We have imposed
no flux boundary condition on the fractal surfaces. That is,
the currents J=T��±±�±�� are zero at the fractal surface.
The outer boundary is set on a circle of radius r=L, where �
is fixed to be 0 and the concentrations are �±=�0. The radius
r is measured as a distance from the seed for the DLA cluster
or from the center of mass for the critical percolation cluster.
We can roughly estimate the capacitance of the electric
double layers on fractal electrodes. The electric charge is
stored in the area of the width of the order of the Debye
length around the fractal electrode. Figures 3�b� and 3�c�
display fractal electrodes and contour curves of �=V /2
=0.5 around the fractal electrodes at L=50, T=5, �0=1, and
V=1 in the equilibrium state, which was obtained by direct
numerical simulations. A DLA cluster and a critical percola-
tion cluster are used as the fractal electrodes, respectively, in
Figs. 3�b� and 3�c�. The fine structure of the fractal surface
becomes unclear because of the finite scale of the Debye
length. Similarly to the box counting method to calculate the
fractal dimension, the number N� of the surface elements
measured by the unit of the Debye length is evaluated as
N��Ns��x /��Df, where Ns is the total number of the surface
sites counted by the smallest length scale �x in our numeri-
cal simulation. The effective surface length is therefore Sef f
=N��=Ns�xDf /�Df−1. The width of the electric double layer
is evaluated as 2� /�. The capacitance is therefore estimated
as

C �
Sef f�

2�
� Rg

Df�2�0

T
�Df/2

. �11�

Figure 4 displays numerical results of the capacitance of
the electric double layer around DLA clusters. Figure 4�a�
displays a relation of C vs Rg for several sizes of DLA clus-
ters for T=5, V=1, L=50, and �0=1. The dashed line de-
notes C�Rg

1.7. Figure 4�b� displays a relation of C vs T, and
the dashed line denotes C�1/T0.83 for Ns=8765, V=1, L
=50, and �0=1. Figure 4�c� displays a relation of C vs �0 for
Ns=8765, V=1, L=50, and T=4, and the dashed line is �0

0.83.
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FIG. 3. �a� Inner fractal electrode of radius Rg of gyration and the outer electrode at r=L. �b� A DLA cluster and a contour curve of �=0.5
around the DLA electrode. �c� Outermost surface of a critical percolation cluster and a contour curve of �=0.5 around the fractal electrode
for T=5, �0=1, L=50, and V=1.
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The numerically obtained exponent 0.83 is close to Df /2
=0.85. Figure 5 displays the capacitance for the critical per-
colation clusters. Figure 5�a� displays C as a function of
Rg �Rg was calculated for the outermost surface� at T=5, V
=1, L=50, and �0=1. The dashed line is C�Rg

1.3. Figure
5�b� displays a relation of C vs T for �0=1, V=1, L=50, and
Ns=1972. The dashed line denotes C�1/T0.665. Figure 5�c�
displays a relation of C vs �0 at Ns=1972
V=1, L=50, and
T=3. The dashed line is C��0

1.3. These numerical results are
consistent with the theoretical estimate �11�. We have also
numerically confirmed that the capacitance does not depend
on the size L of the outer circular electrode.

IV. CHARGING DYNAMICS IN ELECTRIC DOUBLE
LAYERS AROUND FRACTAL ELECTRODES

In this section, we consider time evolution of the charging
process around the fractal electrodes. The electric potential at
the fractal electrode is suddenly changed from 0 to V, and the
charging process in the electric double layer is investigated.
This is interpreted as a problem to study the dynamical re-
sponse of the system for the stepwise force. The topic of
dynamical response of fractal electrodes has been intensively
studied in the context of constant-phase angle �CPA� imped-
ance for the ac voltage, which was already observed in the
1920s. The CPA impedance has a form of Z���=R+k�i��−p.
Levie proposed a transmission line model with p=1/2 for
porous electrodes �12�. Sapoval, Pajkossy-Nyikos, and
Leibig-Halsey studied the CPA impedance for fractal elec-
trodes and showed the exponent p is related to the fractal
dimension Df �13–16�. The CPA impedance was also studied

experimentally by Larsen et al. and Pajkossy-Kyikos
�17,18�. The impedance Z��� is related to the relaxation
function of the current I�t�=dQ�t� /dt for the stepwise elec-
trode potential �=V��t� ���t� is the Heaviside step function�
as I���=V / �i�Z����, where I���=
0

	I�t�e−i�tdt, if the linear
response relation is assumed. For example, the normal expo-
nential relaxation in the RC circuit is directly related to the
normal behavior of the impedance Z���=R+1/ �i�C� with
p=1. The CPA behavior with p
1 is usually considered to
be related to the power law relaxation of I�t�. Halsey and
Leibig suggested a stretched exponential relaxation of the
form I�t��exp�−�t�� for the self-similar electrodes. They
proposed a relation between the multifractal exponent ��2�,
the surface dimension Ds, and the exponent � as �
=��2� /Ds �19�. For the DLA electrode, the exponent � is
estimated as �=0.52. This type of stretched exponential re-
laxation is experimentally observed in various materials such
as glasses and amorphous. Kohrausch first studied this type
of relaxation, and Williams-Watts studied it further, and the
stretched exponential relaxation is often called a Kohrausch-
Williams-Watts �KWW� type relaxation �20�. The anomalous
relaxation including the KWW relaxation and the power law
relaxation and the anomalous diffusion are studied in
�21,22�. Although many authors studied the dynamic re-
sponse of the systems with fractal surfaces, the dynamics of
ions and the finite size effect of the Debye length were not
explicitly involved in the previous theories. On the other
hand, the charging process of the ions into the area of the
order of the Debye length around the fractal electrode is
essential in the Nernst-Planck-Poisson equation, and a new
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FIG. 4. �a� Numerically obtained capacitance C vs radius Rg of gyration for several sizes of DLA clusters for T=5, V=1, L=50, and
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aspect of the charging dynamics might be found in the direct
numerical simulation of our model.

In our simulations, �+=�−=�0 and the electrode potential
� is set to V=1 at t=0. Then, the time evolution of the total
charge Q�t� stored in the electric double layer is measured.
This type of simulation is relevant to the realistic charging
process of the electric double-layer capacitors. From the re-
sult in Sec. II, the relaxation time � is expected to be �
=C ln�L /R2� / �4
�0�, where C is the capacitance for the frac-
tal electrode studied in the previous section and R2 is a char-
acteristic radius of the fractal surface. The relaxation time is
therefore estimated as

� � Rg
Df�2�0

T
�Df/2 ln�L/R2�

4
�0
� T−Df/2�0

Df/2−1 ln�L/R2� .

�12�

However, the distance between the fractal surface and the
outer boundary at r=L is randomly distributed in case of
fractal electrodes. Besides, the charging process might be
delayed deep in fiord regions in the fractal surface because it
seems to take a long time for ions to approach such intricate
regions. The inhomogeneities of the local electric field
around the fractal surface were taken into consideration also
in previous studies �15,16�. That is, the local electric field is
much larger at a protrusion than in a protected region and the
relaxation time is expected to be small at the protrusion. It is
therefore expected that the relaxation time is locally distrib-
uted and the charging process might not obey a simple ex-
ponential law as in the case of the circular electrode. The
power law relaxation and the stretched exponential relax-
ation are often interpreted as the broad distribution of the
relaxation time.

Figure 6�a� displays a time evolution of the total charge
Q�t� for a DLA cluster at T=5, Ns=10 759, L=50, and �0

=1. The solid curve denotes the numerical result, the dashed
curve is Q=Q0�1−exp�−�t /����� with Q0=861.8, �=48.6,
and �=0.84. �The dashed curve is overlapped with the solid
curve and the difference is almost invisible.� The dotted
curve is Q=Q0�1−exp�−t /��� with Q0=861.8 and �=48.6.
The relaxation time � was evaluated as a time when Q�t�
satisfies Q�t� /Q0=1−1/e. The stretched exponential law is

better than a simple exponential law. Figure 6�b� displays a
double-logarithmic plot of −ln�1−Q�t� /Q0� vs t. The linear
curve in this plot implies that the time evolution obeys a
stretched exponential law and the slope of the linear line
represents the exponent �. The dashed line is a stretched
exponential curve with �=0.84. Figure 6�c� displays three
time evolutions of q�x ,y , t�=�−�x ,y , t�−�+�x ,y , t� at three
different points A, B, and C, respectively at �x ,y�
= �49.4,49.4�, �47.2, 64.4�, and �54, 89�, which are in contact
with the fractal electrode by the smallest size scale �x. The
distances between the seed of the DLA cluster located at
�50,50� and the three points are, respectively, small, interme-
diate, and large. The time evolution at point A near the center
is very slow. The time evolution and the relaxation time are
rather different for the three points. We have calculated the
average ��l� and the variance of the local relaxation time �l

for all points satisfying q�x ,y��0.01 in the equilibrium
state. Figure 7�a� shows the sites satisfying �l
 ��l� among
the sites in contact with the fractal electrodes. The local re-
laxation time �l is small in the outer region. It is probably
because the distance from the outer boundary is small in the
region. In our model, we can explicitly calculate the distri-
bution of the local relaxation time by evaluating the relax-
ation time at each point. Figure 7�b� displays a histogram of
the local relaxation time. The distribution of the local relax-
ation time is rather wide, and it is a possible origin of the
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FIG. 6. �a� Time evolution of the total charge Q�t� for a DLA electrode for T=5, Ns=10 759, L=50, and �0=1. The solid curve denotes
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stretched exponential law of Q�t� because the total charge is
the sum of the local charge as Q�t�=

dxdyq�x ,y , t�. How-
ever, the distribution of the local relaxation time does not
seem to obey a simple function, so we do not understand the
relation of the stretched exponential law of �=0.84 and the
histogram of �l well. The numerically obtained value � is
different from �=0.52 predicted by Halsey and Leibig, thus
the relation with their theory is not well-understood.

We have calculated the relaxation time � of Q�t� by
changing several control parameters. Figure 8�a� shows � as
a function of T, and the dashed line is ��1/T0.83 at L=100,
Ns=8765, V=1, and �0=1. Figure 8�b� shows a relation of �
vs �0 at L=100, Ns=8765, V=1, and T=4, and the dashed
line is ��1/�0

0.18. The exponent 0.18 is close to 1−Df /2
=0.15, but it is slightly larger than the theoretical value. Fig-
ure 8�c� shows � as a function of L at T=5, V=1, Ns=2099,
and �0=1, and the dashed curve is C / �4
�ln�L /R2�, where
C=171.0 and the characteristic radius R2=12.0 is approxi-
mated as 1.46Rg or Rg+2.4	T /2. These numerical results are
consistent with the theoretical estimate �12�, although the
time evolution does not obey a simple exponential law. The
exponent � of the stretched exponential law does not depend
on T or �0 strongly. However, the exponent � depends on the
cluster size of the electrodes. For example, � decreases as
�=0.96, 0.93, 0.91, 0.88, 0.88, 0.85, and 0.83 when the ra-
dius of gyration is increased as Rg=8.26, 11.4, 14.1, 16.8,
19.3, and 21.7 at L=50, V=1, T=5, and �0=1. For small Rg,
the fractal electrode can be approximated as a circular elec-

trode, which might be a reason that the exponent � is close to
1.

We have performed the same type of analyses for the
critical percolation clusters and obtained similar results. Fig-
ure 9�a� displays a time evolution of Q�t� for L=45, T=5,
Ns=1978, and �0=1. The solid curve is a numerical result
and the overlapped dashed curve is Q=Q0�1−exp�−�t /�����
with Q0=216.7, �=10.55, and �=0.72, and the dotted curve
is an exponential curve Q=Q0�1−exp�−t /���. It implies that
the charging dynamics obeys a stretched exponential law.
Figure 9�b� displays three time evolutions of q�x ,y , t� for
three different points A, B, and C located at �44.4, 55.6�, �45,
30�, and �77.4, 38�. The relaxation time is rather large for
point A at �44.4, 55.6�, which is located in a deep fiord as
shown in Fig. 9�c�. We have calculated the local relaxation
time �l at all sites satisfying q�x ,y��0.01 in the equilibrium
state also for this fractal electrode. The local relaxation time
is widely distributed between 1.96
�l
48.5. It is a possible
reason for the stretched exponential relaxation. The average
value of the relaxation time is calculated as 12.9, and the
standard deviation is 10.4. All the sites in contact with the
fractal electrode are plotted with dots in Fig. 9�c� and the
sites satisfying �l
 ��l� are shown by thick marks in Fig.
9�c�. It is seen in Fig. 9�c� that the local relaxation time is
relatively large in the concave bay area.

Figure 10�a� displays the relaxation time � of Q�t� as a
function of T at L=50, V=1, �=1, and Ns=1978, and the
dashed curved is ��1/T0.68. Figure 10�b� displays a relation
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of � vs �0 at L=50, V=1, T=3, and Ns=1978, and the dashed
curve is ��1/�0

0.35. The exponent 0.35 is close to 1−Df /2
=0.33. Figure 10�c� displays � as a function of L at V=1,
Ns=1978, �0=1, and T=5, and the dashed curved is
C / �4
�ln�L /R2� where C=216.68 and R2=24.5�Rg

+1.15�T / �2�0��1/2. These results are consistent with the the-
oretical estimate �12�. The exponent � of the stretched expo-
nential law depends also on the system size L. The exponent
� increases as �=0.65, 0.72, 0.75, 0.76, and 0.78, when L is
increased as L=40, 45, 50, 55, and 60 at V=1, T=5, Ns
=1978, and �0=1.

V. SUMMARY AND DISCUSSION

We have proposed a simple model based on the Nernst-
Planck-Poisson equation for the electric double layer around
fractal electrodes and performed direct numerical simulations
of the model. As random fractal electrodes, we have used
DLA clusters and critical percolation clusters because the
fractal dimensions are well-known.

We have roughly estimated the capacitance and the relax-
ation time of the electric double layer on fractal electrodes.
The capacitance and the relaxation time depend on the tem-
perature and the concentration by power laws, and the expo-
nents depend on the fractal dimension of the electrodes. We
have confirmed the scaling relation with direct numerical
simulations. We have further found a stretched exponential
law in the time evolution of Q�t�. In our model, the local
relaxation time can be measured at each point in the electric

double layer. The stretched exponential law seems to be due
to the wide distribution of the local relaxation time, however,
the details are not well-understood.

We have performed numerical simulations in a finite sys-
tem such as Rg�10 and L�50, which correspond to the
order of several hundred angstroms because the Debye
length is the order of tens of angstroms. However, the scaling
law of the capacitance is expected to be applied to the usual
macroscopic experimental situation because the capacitance
does not depend on the size L of the outer electrode and
depends on Rg via a power law. However, the exponent of �
depends on Rg and L. We are not sure now that the stretched
exponential law is satisfied in a macroscopic system.

In this paper, we have assumed that the electrode potential
V is not so strong. In this case, the stored total charge Q0 is
proportional to the electrode potential V. In the case of stron-
ger electrode potential, Q0 might depend nonlinearly on V.
We have also assumed simple fractals for the electrodes,
which cannot be interpreted as porous electrodes. As Leibig
and Halsey suggested in �16�, the CPA behavior character-
ized by the power law is expected to appear in porous media.
We will investigate the charging dynamics in such porous
media in the next step, using the Nernst-Planck-Poisson
equation. We have further neglected the Helmholtz layer for
the electric double layer and various size effects of ions and
water molecules. Our model is therefore too simple to com-
pare realistic experiments now. We would like to generalize
our model system and study the charging dynamics of the
electric double layer in more realistic systems in the future.
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